fisica.uc.pt • Departamento de Física • Universidade de Coimbra
DEPT. DE FÍSICA
uc  ›  fctuc  ›   fisica  ›   disciplinas
fisica.uc.pt
o dept de física
pessoas
ensino
•lic. e mestrado
•doutoramento
•prog. erasmus
investigação
estudar aqui
actividades
contactos
 
2012 - 2013 ↑↓
escolha o ano lectivo:
2019.2020
2018.2019
2017.2018
2016.2017
2015.2016
2014.2015
2013.2014
2012.2013
2011.2012
2010.2011
2009.2010
2008.2009
2007.2008
2006.2007
2005.2006
2004.2005
2003.2004
2002.2003
CALENDAR
SUBJECTS
TIMETABLES
ROOMS
TEACHING MAP
EXAMS MAP
      
Física Estatística
F
2012 . 2013  - 1º semestre
SYNOPSIS SYLLABUS TIMETABLE ASSESSMENT SPECIFICATION


syllabus and bibliography

Review of concepts of the kinetic theory of gases.

Distribution of Maxwell velocities. Maxwell-Boltzmann distribution.

Review of concepts in Classic Mechanics and Quantum Mechanics.

Introduction to the concept of probability in Classic Statistical Mechanics and in Equilibrium Quantum Statistical Mechanics

Entropy and essential postulate of Statistical Mechanics. Types of distribution of probability in Equilibrium Statistical Mechanics: micro-canonical, canonical and grand-canonical. Deduction of Boltzmann formula in the micro-canonical distribution and Nernst’s interpretation.

Brief review of Equilibrium Thermodynamics.

Partition function in the canonical distribution. Applications of canonical distribution to the study of thermodynamics properties of physical systems: perfect gas and two energy level quantum system. Analysis of the characteristic curve of Schottky specific heat.

Statistical description of Einstein solid in the context of micro-canonical and canonical distributions. Dulong-Petit law. Rotational and vibrational degrees of freedom in diatomic molecules.

Grand-canonical ensemble and its partition function. Thermodynamic potentials that are associated with grand-canonical partition function.

Distinguishable and undistinguishable particles. Monoatomic ideal gas in the context of grand-canonical ensemble.

Entropy of an ideal gas and Gibbs paradox. Fermi and Bose Particles.

Bose-Einstein statistics and Bose-Einstein condensation. Fermi-Dirac distribution.

Planck distribution. Photon gas. Black Body Radiation.

Bibliography of reference

BOWLEY, R.; SÁNCHEZ, M. (1996). Introductory Statistical Mechanics. Clarendon Press.

SCHROEDER, D. (1999). An introduction to Thermal Physics. Addison Wesley Longman.

AMIT, D.; VERBIN, Y. (1999). Introductory Course in Statistical Mechanics. World Scientific.

SALINAS, S. (2001). Introduction to Statistical Physics. Springer.

PATHRIA, R. (1996). Statistical Mechanics. 2.ª ed. Butterworth-heinemann.

MANDL, F. (1998). Statistical Mechanics. 2ª ed. John Wiley & Sons.

REIF, F. (1965). Statistical Physics. McGraw-Hill.

FLIESSBACH, T. (2000). Curso de Física Estatística. Fundação C. Gulbenkian.

 


Departamento de Física, UC ©2013
Contactos    Sugestões    Aviso legal     Emergência
Search     Português    Login
acesso restrito a:
fisica.uc.pt
www.uc.pt
infordocente.uc.pt
inforestudante.uc.pt
lugus.uc.pt
Search     Português    Login
acesso restrito a:
fisica.uc.pt
www.uc.pt
infordocente.uc.pt
inforestudante.uc.pt
lugus.uc.pt