|
Statistical Physics
F 2019 . 2020 - 1º semestre
syllabus and bibliography Maxwell distribution of velocities. Maxwell-Boltzmann distribution.
Probability in Classical Statistical Mechanics and equilibrium Quantum Statistical Mechanics. Entropy and fundamental postulate of statistical mechanics. Types of probability distribution in equilibrium statistical mechanics: microcanonical distributions, canonical and grand-canonical. The canonical distribution and its partition function. Canonical distribution and the study of thermodynamic properties of physical systems. Einstein description of solids in the context of the microcanonical and canonical distributions. Grand-canonical ensemble and its partition function. Thermodynamic potentials for the grand-canonical partition. Distinguishable and indistinguishable particles. The Gibbs paradox. Bose-Einstein statistics and Bose-Einstein condensation. Fermi-Dirac distribution. Planck distribution. Photon gas. Blackbody radiation. Bibliography of reference 1. R. Bowley, M. Sánchez, Introductory Statistical Mechanics, Clarendon Press, 1996.
2. D. Schroeder, An introduction to Thermal Physics, Addison Wesley Longman, 1999. 3. D. Amit, Y. Verbin, Introductory Course in Statistical Mechanics, World Scientific, 1999. 4. S. Salinas, Introduction to Statistical Physics, Springer, 2001. 5. R. Pathria, Statistical Mechanics,2.ª ed., Butterworth-heinemann, 1996. 6. F. Mandl, Statistical Mechanics, 2ª ed., John Wiley & Sons, 1998. 7. F. Reif, Statistical Physics, McGraw-Hill, 1965. 8. T. Fliessbach, Curso de Física Estatística, Fundação C. Gulbenkian, 2000.
|