|
General Relativity and Cosmology
F 2014 . 2015 - 2º semestre
syllabus and bibliography Geometry and Gravitation - historic introduction. Non-Euclidean geometries and theories of gravitation.
Special Relativity - Revision. Concepts of relativistic hydrodynamics. Momentum-energy tensor of a perfect fluid: properties, conservation laws. Fundamental equations. The equivalence principle. The Eötvös-Dicke e de Pound- Rebka experiments. Affine connection and metric tensor. Christoffel symbols. The principle of general covariance and its implications. Gravitation and space curvature. Riemann-Christoffel and Ricci tensors, curvature scalar. Parallel transport and curvature tensor. Bianchi identities. Einstein equation in a quasi-minkowski metric. Solutions of Einstein equations for isostatic and isotropic fields; singularity, General equation of motion of a particle or photon in a gravitational field. Applications. Cosmological principle. Red shift. Robertson-Walker metric. Models. Big-Bang, evolution of the universe. Bibliography of reference Gravitation and Cosmology: Principles and Aplications of the General Theory of Relativity S. Weinberg, Wiley & Sons, New York, 1972. Gravity - An Introduction to Einstein's General Relativity, James B. Hartle, Addison Wesley, New Yourk, 2003. A First Course in General Relativity B. Schutz , Cambridge Univ. Press, 1990. Gravitation C. W. Misner, K. S. Thorne, J. A. Wheeler, W. H. Freeman and Company, S. Francisco, 1973. Problem Book in Relativity and Gravitation, Lightman, A. P. et al, Princeton University Press, 1975. Introducing Einstein's Relativity, Ray d'Inverno, Claredron Press, Oxford, 1990.
|