|
General Relativity and Cosmology
F+AIE 2018 . 2019 - 2º semestre
syllabus and bibliography Geometry and Gravitation - historic introduction. Non-Euclidean geometries and theories of gravitation.
Special Relativity - Revision. Concepts of relativistic hydrodynamics. Momentum-energy tensor of a perfect fluid: properties, conservation laws. Fundamental equations. The equivalence principle. The Eötvös-Dicke e de Pound- Rebka experiments. Affine connection and metric tensor. Christoffel symbols. The principle of general covariance and its implications. Gravitation and space curvature. Riemann-Christoffel and Ricci tensors, curvature scalar. Parallel transport and curvature tensor. Bianchi identities. Einstein equation in a quasi-minkowski metric. Solutions of Einstein equations for isostatic and isotropic fields; singularity, General equation of motion of a particle or photon in a gravitational field. Applications. Cosmological principle. Red shift. Robertson-Walker metric. Models. Big-Bang, evolution of the universe. Bibliography of reference B. F. Schutz, A first course in general relativity, CUP 1990
H. Stephani, General Relativity. An introduction to the theory of the gravitational field, CUP 1990 J. B. Hartle, Gravity: an introduction to Einstein General Relativity, Addison-Wesley 2003 S. Carrol, Lectures on General Relativity, http://xxx.lanl.gov/abs/gr-qc/9712019 S. Weinberg, Gravitation and Cosmology, John Wiley & Sons 1972 S. Weinberg, Cosmology, CUP 2008 C. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation, W. H. Freeman & Co Ltd 1973 L. Ryder, Introduction to General Relativity, CUP 2009
|