|
Métodos Computacionais para Biomedicina
EB 2019 . 2020 - 2º semestre
Especificação técnica - ficha curricular Elementos especificos
*) N.B. se houver estudantes que não falem português a língua é o inglês.
Objectivos formativos
- Adquirir os conhecimentos básico de métodos numéricos e computacionais e a sua
aplicação a sistemas biológicos e à biomedicina. - Aplicar estes conhecimentos na resolução, por meios computacionais, de problemas na área da biomedicina. - Reconhecer a importância dos métodos computacionais na resolução de problemas complexos em áreas associadas aos processos biológicos e médicos. - Processar e relacionar as questões colocadas com os conhecimentos anteriores. Programa genérico mínimo
Bases de análise numérica:
- Interpolação numérica: splines. - Diferenciação numérica: regras de 2, 3 e 5 pontos e método de Richardson. - Integração numérica: regras do trapézio, Simpson, Romberg. - Zeros e extremos de uma função de uma variável: métodos da bissecção, secante e Newton-Raphson. - Sistemas lineares de equações: eliminação de Gauss-Jordan, factorização LU. - Extremos de funções de várias variáveis: métodos da descida máxima e dos gradientes conjugados. - Regressão linear e não linear. Métodos importantes na modelação de sistemas biológicos: - Método de Monte Carlo: números aleatórios, integração, Metropolis, Gillespie. - Resolução de equações diferenciais: métodos de Euler, Euler-Cramer, Runge-Kutta e preditor-corrector. Equações stiff. - Resolução numérica de equações de derivadas parciais. Pré-requisitos
Computadores e Programação; Álgebra Linear e Geometria Analítica; Análise Matemática III
Competências genéricas a atingir
. Competência em análise e síntese;. Conhecimentos de informática relativos ao âmbito do estudo; . Competência em gestão da informação; . Competência em aprendizagem autónoma; . Adaptabilidade a novas situações; . Competência em organização e planificação; . Competência para resolver problemas; . Competência em raciocínio crítico; . Criatividade; . Competência em aplicar na prática os conhecimentos teóricos; (por ordem decrescente de importância) Horas lectivas semestrais
Método de avaliação
Bibliografia de referência
S. Dunn, Numerical methods in Biomedical Engineering, Academic Press (2005)
P. DeVries, J. Hasbun , A First Course in Computational Physics, Jones & Bartlett Publishers (2010) C. Moler, Numerical Computing with MATLAB, SIAM (2008) G. Smith, Numerical Solution of Partial Differential Equations: Finite Difference Methods, Clarendon Press (1985) J. Faires, R. Burden, Numerical Analysis, Brooks/Cole (2005) Método de ensino
O ensino é distribuído por aulas teóricas (T) e práticas (PL).
As T visam a explanação dos métodos numéricos, aplicados computacionalmente à área da Biomedicina, e estimulam a compreensão e integração dos conhecimentos. As PL são práticas computacionais e o software utilizado é o MatLab. As P permitem a implementação e aplicação prática dos métodos estudados, um reforço do ensino teórico, e promovem o trabalho e a discussão em grupo. Recursos específicos utilizados
Sala de computadores, com o software MatLab instalado, para as aulas práticas. |