DEPARTAMENTO DE FÍSICA

Atomic and Molecular Physics - F+EF

Ano letivo: 2017-2018

Specification sheet

Specific details

course code | cycle os studies | academic semester | credits ECTS | teaching language |

1002671 | 1 | 1 | 6 | pt |

Learning goals

Increase the knowledge of the atomic and molecular structure in the context of the quantum theory, and become familiar with the fundamental aspects of atomic and molecular spectroscopy.

Skills to develop: Competence in analysis and synthesis; Competence to solve problems; Competence in critical thinking; Adaptability to new situations; Competence in applying theoretical knowledge in practice.

Skills to develop: Competence in analysis and synthesis; Competence to solve problems; Competence in critical thinking; Adaptability to new situations; Competence in applying theoretical knowledge in practice.

Syllabus

Atoms with 1 electron: Schrödinger equation; relationship between magnetic dipole moment and angular momentum, the Stern-Gerlach experiment, spin-orbit interaction, fine and hyperfine structure, Zeeman and Stark effects, interaction with the electromagnetic radiation field - emission and absorption of radiation, radiative transitions and selection rules. Atoms with several electrons: the central field approximation, electronic configurations and spectroscopic notation, spin-orbit interaction, LS and j-j coupling, optical and X-ray spectra, Zeeman and Paschen-Back effects. Molecules: The molecular bonding, electronic structure of diatomic molecules, the H2+ molecular ion, the hydrogen molecule, complex molecules. Molecular spectra: rotational and vibrational levels, electronic spectra. Transitions between atomic and molecular levels; Definition of cross section. Lasers: conditions for laser emission, absorption and gain coefficients, amplitude and phase of laser light.

Prerequisites

General Physics, Electromagnetism I, Quantum Mechanics I, Mathematical Analises I, II and III.

Generic skills to reach

. Competence in analysis and synthesis;. Competence to solve problems;

. Critical thinking;

. Adaptability to new situations;

. Competence in applying theoretical knowledge in practice;

. Competence in oral and written communication;

. Competence for working in group;

. Competence to communicate with people who are not experts in the field;

. Ethical commitment;

. Competence in autonomous learning;

(by decreasing order of importance)

Teaching hours per semester

lectures | 30 |

laboratory classes | 45 |

total of teaching hours | 75 |

Assessment

Sseminar or study visit | - % |

Laboratory or field work | - % |

Problem solving | 10-15 % |

Synthesis work thesis | - % |

Project | 0-10 % |

Research work | - % |

Mini tests | - % |

Assessment Tests | 75-90 % |

Exam | 75-90 % |

Other | - % |

- % | |

- % |

Bibliography of reference

- ?Physics of Atoms and Molecules?, B. H. Bransden & C. J. Joachain, Prentice Hall, 2nded., 2003. - ?Introduction to quantum mechanics?, D. Griffiths - ?Quantum Physics of Atoms, Molecules, Solids, Nucleus and Particles?, R. Eisberg e R. Resnick, J. Wiley & Sons, 2nd ed., 1985 .

Teaching method

Partition of contact hours: Lectures 30h, Theoretical-Practical 0 h, Laboratory Practice 45h, Field Work 0h, Seminar 0h, Tutorial 0h, Other 0h.

Evaluation components and corresponding weights (as percentage) in the final grade

This course will include expository lectures, classes where some problems/topics are analysed and discussed and laboratory sessions where some experiments are performed.

Evaluation components and corresponding weights (as percentage) in the final grade

This course will include expository lectures, classes where some problems/topics are analysed and discussed and laboratory sessions where some experiments are performed.

Resources used

Laboratório de Física Moderna com recursos computacionais.